
Permutat ion Generat ion Methods*

ROBERT SEDGEWlCK
Program ~n Computer Science and Dwlsmn of Applled Mathematics
Brown Unwersity, Prowdence, Rhode Island 02912

This paper surveys the numerous methods tha t have been proposed for pe rmuta tmn
enumera t ion by computer. The various algori thms which have been developed over the
years are described in detail, and zmplemented in a modern ALc, oL-hke language. All of
the algori thms are derived from one rumple control structure.

The problems involved with implement ing the best of the algori thms on real com-
puters are t reated m detail. Assembly-language programs are derived and analyzed
fully.

The paper is intended not only as a survey of permuta t ion generation methods, but
also as a tutomal on how to compare a number of different algori thms for the same task

Key Words and Phrases: permutat ions, combmatomal algori thms, code optimlzatmn,
analysis of algorithms, lexicographlc ordering, random permutatmns, recursion, cyclic
rotatzon.

CR Categories: 3.15, 4.6, 5 25, 5.30.

INTRODUCTION
Over thirty algorithms have been pub-
lished during the past twenty years for
generating by computer all N! permuta-
tions of N elements. This problem is a
nontrivial example of the use of computers
in combinatorial mathematics, and it is
interesting to study because a number of
different approaches can be compared.
Surveys of the field have been published
previously in 1960 by D. H. Lehmer [26]
and in 1970-71 by R. J. Ord-Smith [29, 30].
A new look at the problem is appropriate
at this time because several new algo-
rithms have been proposed in the inter-
vening years.

Permutation generation has a long and
distinguished history. It was actually one
of the first nontrivial nonnumeric prob-
lems to be attacked by computer. In 1956,
C. Tompkins wrote a paper [44] describing
a number of practical areas 'where permu-

* Thin work was supported by the Natmnal Science
Foundatmn Gran t No. MCS75-23738

tation generation was being used to solve
problems. Most of the problems that he
described are now handled with more so-
phisticated techniques, but the paper stim-
ulated interest in permutation generation
by computer per se. The problem is simply
stated, but not easily solved, and is often
used as an example in programming and
correctness. (See, for example, [6]).

The study of the various methods that
have been proposed for permutation gener-
ation is still very instructive today because
together they illustrate nicely the rela-
tionship between counting, recursion, and
iteration. These are fundamental concepts
in computer science, and it is useful to
have a rather simple example which illus-
trates so well the relationships between
them. We shall see that algorithms which
seem to differ markedly have essentially
the same structure when expressed in a
modern language and subjected to simple
program transformations. Many readers
may find it surprising to discover that
~'top-down" (recursive) and '~bettom-up"

Copyright © 1977, Associahon for Computing Machinery, Inc. General permismon to repubhsh, bu t not for
profit, all or par t of this materml is granted provided tha t ACM's copymght notice is given and t ha t reference
is made to the publication, to its date of issue, and to the fact tha t r e p n n t m g privileges were granted by
permission of the Association for Computing Machinery

Computing Surveys, Vol 9, No 2, June 1977

138 • R . S e d g e w i c k

CONTENTS

INTRODUCTION
1 METHODS BASED ON EXCHANGES

Recur~lve methods
Adjacent exchanges
Factorial counting
"Loopless" algorithms
Another lterahve method

2 OTHER TYPES OF ALGORITHMS
Nested cycling
Lexlcograpluc algorlthras
Random permutataons

3 IMPLEMENTATION AND ANALYSIS
A recurslve method (Heap)
An lteratlve method (Ives)
A cychc method (Langdon)

CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

v

(iterative) design approaches can lead to
the same program.

Permutation generation methods not
only illustrate programming issues in
high-level (procedural) languages; they
also illustrate implementation issues in
low-level (assembly) languages. In this pa-
per, we shall try to find the fastest possible
way to generate permutations by com-
puter. To do so, we will need to consider
some program "optimization" methods (to
get good implementations) and some
mathematical analyses (to determine
which implementation is best). It turns out
that on most computers we can generate
each permutation at only slightly more
than the cost of two store instructions.

In dealing with such a problem, we must
be aware of the inherent limitations.
Without computers, few individuals had
the patience to record all 5040 permuta-
tions of 7 elements, let alone all 40320
permutations of 8 elements, or all 362880
permutations of 9 elements. Computers

help, but not as much as one might think.
Table 1 shows the values of N! for N -< 17
along with the time that would be taken
by a permutation generation program that
produces a new permutation each micro-
second. For N > 25, the time required is
far greater than the age of the earth!

For many practical applications, the
sheer magnitude of N! has led to the devel-
opment of "combinatorial search" proce-
dures which are far more efficient than
permutation enumeration. Techniques
such as mathematical programming and
backtracking are used regularly to solve
optimization problems in industrial situa-
tions, and have led to the resolution of
several hard problems in combinatorial
mathematics (notably the four-color prob-
lem). Full t reatment of these methods
would be beyond the scope of this p a p e r -
they are mentioned here to emphasize
that, in practice, there are usually alter-
natives to the "brute-force" method of gen-
erating permutations. We will see one ex-
ample of how permutation generation can
sometimes be greatly improved with a
backtracking technique.

In the few applications that remain
where permutation generation is really re-
quired, it usually doesn't matter much
which generation method is used, since
the cost of processing the permutations far

T A B L E 1. APPROXIMATE TIME NEEDED TO GENERATE
ALL PERMUTATIONS OF N (1 /zsec pe r p e r m u t a t i o n)

N NI T i m e

1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880

10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355689428096000

3 seconds
40 seconds

8 m i n u t e s
2 h o u r s
1 day
2 weeks
8 m o n t h s

10 y e a r s

Computing Surveys, Vol 9, No 2, June 1977

P e r m u t a t i o n Genera t ion M e t h o d s • 139

exceeds the cost of generating them. For
example, to evaluate the performance of
an operating system, we might want to try
all different permutations of a fLxed set of
tasks for processing, but most of our time
would be spent simulating the processing,
not generating the permutations. The
same is usually true in the study of combi-
natorial properties of permutations, or in
the analysis of sorting methods. In such
applications, it can sometimes be worth-
while to generate "random" permutations
to get results for a typical case. We shall
examine a few methods for doing so in this
paper.

In short, the fastest possible permuta-
tion method is of limited importance in
practice. There is nearly always a better
way to proceed, and if there is not, the
problem becomes really hopeless when N
is increased only a little.

Nevertheless, permutation generation
provides a very instructive exercise in the
implementation and analysis of algo-
rithms. The problem has received a great
deal of attention in the literature, and the
techniques that we learn in the process of
carefully comparing these interesting al-
gorithms can later be applied to the per-
haps more mundane problems that we face
from day to day.

We shall begin with simple algorithms
that generate permutations of an array by
successively exchanging elements; these
algorithms all have a common control
structure described in Section 1. We then
will study a few older algorithms, includ-
ing some based on elementary operations
other than exchanges, in the framework of
this same control structure (Section 2). Fi-
nally, we shall treat the issues involved in
the implementation, analysis, and "opti-
mization" of the best of the algorithms
(Section 3).

1. METHODS BASED ON EXCHANGES
A natural way to permute an array of
elements on a computer is to exchange two
of its elements. The fastest permutation
algorithms operate in this way: All N! per-
mutations of N elements are produced by a
sequence of N ! - 1 exchanges. We shall use
the notation

P[1]:=:P[2]

to mean "exchange the contents of array
elements P[1] and P[2]". This instruction
gives both arrangements of the elements
P[1], P[2] (i.e., the arrangement before the
exchange and the one after). For N = 3,
several different sequences of five ex-
changes can be used to generate all six
permutations, for example

P[1] =:P[2]
P[2]:=:P[3]
P[1] =:P[2]
P[2]-=:P[3]
P[1]:=-P[2].

If the initial contents of P[1] P[2] P[3] are
A B C, then these five exchanges will pro-
duce the permutations B A C, B C A,
C B A , C A B, a n d A C B.

It will be convenient to work with a
more compact representation describing
these exchange sequences. We can think of
the elements as passing through "permu-
tation networks" which produce all the
permutations. The networks are com-
prised of "exchange modules" such as that
shown in Diagram 1 which is itself the

DIAGRAM 1

permutation network for N = 2. The net-
work of Diagram 2 implements the ex-
change sequence given above for N = 3.
The elements pass from right to left, and a
new permutation is available after each
exchange. Of course, we must be sure that
the internal permutations generated are
distinct. For N = 3 there are 35 = 243
possible networks with five exchange mod-
ules, but only the twelve shown in Fig. 1
are "legal" (produce sequences of distinct
permutations). We shall most often repre-
sent networks as in Fig. 1, namely drawn
vertically, with elements passing from top
to bottom, and with the permutation se-

:I I
DIAGRAM 2.

Computing Surveys, Vol 9, No 2, June 1977

140 • R . Sedgewick

~ABC ~ABC ABC
BAC ACB 'CBA
BCA BCA --'CAB
CBA BAC 'BAC
CAB CAB 'BCA
ACB CBA ACB

~ A B C ~ A BC ~A B C
BAC ACB CBA
BCA BCA CAB
ACB CBA ACB
CAB CAB BCA
CBA BAC BAC

~ABC ~ABC ABC
BAC ACB ~ CBA
CAB CAB BCA
ACB CBA ACB
BCA BCA ~ CAB
CBA BAC BAC

~ A B C ~ A B C ~A BC
BAC ACB CBA
CAB CAB BCA
CBA BAC BAC
BCA BCA CAB
ACB CBA ACB

FIGURE 1. Legal permuta t ion networks for three
elements.

quences that are generated explicitly writ-
ten out on the right.

It is easy to see that for larger N there
will be large numbers of legal networks.
The methods that we shall now examine
will show how to systematically construct
networks for arbitrary N. Of course, we
are most interested in networks with a
sufficiently simple structure that their ex-
change sequences can be conveniently im-
plemented on a computer.

Recursive Methods

We begin by studying a class of permuta-
tion generation methods that are very sim-
ple when expressed as recursive programs.
To generate all permutations of
PIll, • • • ,PIN], we repeat N times the step:
"first generate all permutations of
P[1],- • • ,P[N-1], then exchange P[N] with
one of the elements P[1],. . . ,P[N-1]". As
this is repeated, a new value is put into
P[N] each time. The various methods dif-
fer in their approaches to f'filing P[N] with
the N original elements.

The first and seventh networks in Fig. 1
operate according to this discipline. Recur-

A C D A--A D--D B

o ciEB o-VA ^
D ~ G ~ 3.

sively, we can build up networks for four
elements from one of these. For example,
using four copies of the f'Lrst network in
Fig. 1, we can build a network for N = 4,
as shown in Diagram 3. This network fills
P[4] with the values D, C, B, A in de-
creasing alphabetic order (and we could
clearly build many similar networks
which fill P[4] with the values in other
orders).

The corresponding network for five ele-
ments, shown in Diagram 4, is more com-
plicated. (The empty boxes denote the net-
work of Diagram 3 for four elements). To
get the desired decreasing sequence in
P[5], we must exchange it successively
with P[3], P[1], P[3], P[1] in-between gen-
erating all permutations of P[1] , . . . ,P[4].

In general, we can generate all permu-
tations of N elements with the following
recursive procedure:

Algori thm 1.
procedure permutations (N);

begin c: = 1;
loop:

if N > 2 then permutatmns(N-1)
endif;

while c<N:
P[B [N,c]]:=:P[N];
c:=c+l

repeat
end;

This program uses the looping control con-
struct loop • • • while • • • repeat which is
described by D. E. Knuth [23]. Statements
between loop and repeat are iterated:
when the while condition fails, the loop is
exited. If the while were placed immedi-
ately following the loop, then the state-
ment would be like a normal ALGOL while.
In fact, Algorithm 1 might be imple-
mented with a simpler construct like for

~ ~-c--c J ~E~EJ ~^ ^'
c~

E E ~ D D ~ C C B ^

DIAO~M 4.

Computang Surveys, Vol 9, No. 2, June 1977

P e r m u t a t i o n Generat ion Me thods • 141

c:=1 until N do . ' - were it not for the
need to test the control counter c within
the loop. The array B[N,c] is an index
table which tells where the desired value
of P[N] is after P[1],. • • ,P[N-1] have been
run through all permutations for the cth
time.

We still need to specify how to compute
B[N,c]. For each value of N we could spec-
ify any one of (N- l) ! sequences in which
to fill P[N], so there are a total of
(N - 1) ! (N - 2) ! (N - 3) ! . • • 3!2!1! different ta-
bles B[N,c] which will cause Algorithm 1
to properly generate allN! permutations of
P[1], • . . ,P[N].

One possibility is to precompute BIN,c]
by hand (since we know that N is small),
continuing as in the example above. If we
adopt the rule that P[N] should be filled
with elements in decreasing order of their
original index, then the network in Dia-
gram 4 tells us that B[5,c] should be 1,3,1,3
for c = 1,2,3,4. ForN = 6 we proceed in the
same way: if we start wi thA B C D E F,
then the l~Lrst N = 5 subnetwork leaves the
elements in the order C D E B A F, so
that B[6,1] must be 3 to get the E into P[6],
leaving C D F B A E. The second N = 5
subnetwork then leaves F B A D C E, so
that B[6,2] must be 4 to get the D into P[6],
etc. Table 2 is the full table for N <- 12
generated this way; we could generate per-
mutations with Algorithm 1 by storing
these N (N - 1) indices.

There is no reason to insist that P[N]
should be filled with elements in decreas-
ing order. We could proceed as above to
build a table which fills P[N] in any order
we choose. One reason for doing so would
be to try to avoid having to store the table:
there are at least two known versions of

TABLE 2. I_~EX TA~LE B[N, c] FOa AJP,_,oRrrHM 1

N

2 1
3 1 1
4 1 2 3
5 3 1 3 1
6 3 4 3 2 3
7 5 3 1 5 3
8 5 2 7 2 1
9 7 1 5 5 3

1 0 7 8 1 6 5
1 1 9 7 5 3 1
1 2 9 6 3 1 0 9

1
2 3
3 7 1
4 9 2 3
9 7 5 3
4 3 8 9

1
2 3

this method in which the indices can be
easily computed and it is not necessary to
precompute the index table.

The fLrst of these methods was one of the
earliest permutation generation algo-
ri thms to be published, by M. B. Wells in
1960 [47]. As modified by J. Boothroyd in
1965 [1, 2], Wells' algorithm amounts to
using

/ ~ - c i fN is even and c> 2
t~N,c]

- 1 otherwise,

or, in Algorithm 1, replacing
P[B[N,c]]:=:P[N] by

if (N even) and (c>2)
then P[N]:=:P[N-c]
else P[N]:=:P[N-1] endif

It is rather remarkable that such a simple
method should work properly. Wells gives
a complete formal proof in his paper, but
many readers may be content to check the
method for all practical values of N by
constructing the networks as shown in the
example above. The complete networks for
N = 2,3,4 are shown in Fig. 2.

In a short paper that has gone virtually
unnoticed, B.R. Heap [16] pointed out sev-
eral of the ideas above and described a
method even simpler than Wells'. (It is not
clear whether Heap was influenced by
Wells or Boothroyd, since he gives no ref-
erences.) Heap's method is to use

B(N,c)=(I f iN is odd

l f Y is even,

or, in Algorithm 1, to replace
P[B[N,c]]:=:P[N] by

i f N odd then P[N]:=:P[1] else P[N]:=:P[c] endif

Heap gave no formal proof that his method
works, but a proof similar to Wells' will
show that the method works for all N.
(The reader may find it instructive to ver-
ify that the method works for practical
values of N (as Heap did) by proceeding as
we did when constructing the index table
above.) Figure 3 shows that the networks
for N = 2,3,4 are the same as for Algo-
r i thm 1 with the precomputed index table,
but that the network for N = 5, shown in
Diagram 5, differs. (The empty boxes de-
note the network for N = 4 from Fig. 3.)

Computing Surveys, Vol. 9, No. 2, June 1977

142 R. Sedgewick
N=4

ABCD

BACD

BCAD

CBAD

CABD

ACBD

AB ACDB

BA CADB

C DA B

DCAB

DAC B

A DC B

ADBC
A BC

DA BC
BAC

DBAC
BCA

BDAC
CBA

CAB BADC

ACB ADBC

CBDA

BCDA

BDCA

-- DBCA

DCBA

CDBA

=2,3,4.

N=2

H
N=

4j

FIGURE 2. Wells' algorithm for N

Neither Wells nor Heap gave recursive
formulations of their methods, although
Boothroyd [1] later gave a recursive imple-
mentation of his version of Wells' method.
Although Wells and Heap undoubtedly ar-
rived at their nonrecursive programs di-
rectly, it is instructive here to derive a
nonrecursive version of Algorithm 1 by
systematically removing the recursion.

The standard method for implementing
a recursive procedure is to maintain a
stack with the parameters and local varia-
bles for each invocation of the procedure.
The simple structure of Algorithm 1
makes it more convenient to maintain an
array c [1] , . . . , c [N] , where c[i] is the
value of c for the invocation permuta-
tions(i). Then by decrementing i on a call
and incrementing i on return, we ensure
that c[i] always refers to the proper value
ofc. Since there is only one recursive call,
transfer of control is implemented by
jumping to the beginning on call and

jumping to the place following the call on
return. The following program results di-
rectly when we remove the recursion and
the loops from Algorithm 1:

t:=N;
begtn: c[d:=l;
loop: if t>2 then t := t -1 ; go to begtn end[f;
return: if c[t]>-t then go to extt end[f;

P[B[c#]]] =:P[t];
c[~]:=c[t] + l;
go to loop;

extt" if t < N then t: =t + 1; go to return end[f;

This program can be simplified by combin-
ing the instructions at begin and loop into
a single loop, and by replacing the single
go to exit with the code at exit:

t :=N+l ;
loop: loop while t>2: t .= t -1 ; c[t]:=l repeat;
return, i f c[t]>-z

then if t < N then t := t+ l ;
go to return end[f;

else P[B[c[t]]] =:Pit];
c[~]:=c[t] + l;
go to loop;

end[f;

The program can be transformed further if
we observe that, after c [N],. • . , c [2] are all
set to 1 (this is the first thing that the
program does), we can do the assignment
c[i]:=l before t:=i+l rather than after
i :=i-1 without affecting the rest of the
program. But this means that the loop
does nothing but set i to 2 and it can be
eliminated (except for the initialization),.
as in this version:

t:=N;
loop: c[t]:=l while z>2. t :=t-1 repeat;

return" [f c[t]>-t
then if t < N then c[z]:=l; ~:=t+l;

go to return end[f;
else P[B[c[t]]]: =.P[t];

c[d: =c[t] + 1;
t:=2;
go to return;

end[f;
Finally, since the two go to's in this pro-
gram refer to the same label, they can be
replaced with a single loop. • • repeat. The
formulation

i:=N; loop: c[~]:=1 while t > 2 : t : = z - 1 repeat;
loop:

[f c[t]<l then P[B[c[zJ]]:=:P[z];
c[t]:=c[z]+ 1, t:=2;

else c[t]:=l; t:=t+l;
end[f;

while t<-N repeat;

Computing Surveys, Vol 9, No 2, June 1977

Permutation Generation Methods • 143

N = 2

B A

N = 3

i I
A B e

! BA C

A e B
BOA

F I G U R E 3 .

N = 4

il
!l

ABC D

BAC D

C A B D

A C B D

B C A D

C BAD

DBA C

B DA C

A DB C

DA BC

BADC

A BDC

AC DB

CADB

DACB

A DC B

C DA B

DCAB

DCBA

C DBA

B D e A

D B CA

C BDA

BC DA

2 ,3 ,4 . Heap's algorithm for N =

is attractive because it is symmetric: each
time through the loop, either c[i] is initial-
ized and i incremented, or c[i] is incre-
mented and i initialized. (Note: in a sense,
we have removed too many go to's, since
now the program makes a redundant test i
-< N after setting i: =2 in the then clause.
This can be avoided in assembly language,
as shown in Section 3, or it could be han-
dled with an "event variable" as described
in [24].) We shall examine the structure of
this program in detail later.

The programs above merely generate all
permutations of P[1],. • • ,P[N]; in order to
do anything useful, we need to process
each permutation in some way. The proc-
essing might involve anything from sim-
ple counting to a complex simulation. Nor-

-B B- ~C
-C C - -D
~D a ^

DIAGRAM 5.

really, this is done by turning the permu-
tation generation program into a proce-
dure which returns a new permutation
each time it is called. A main program is
then written to call this procedure N!
times, and process each permutation. (In
this form, the permutation generater can
be kept as a library subprogram.) A more
efficient way to proceed is to recognize that
the permutation generation procedure is
really the "main program" and that each
permutation should be processed as it is
generated. To indicate this clearly in our
programs, we shall assume a macro called
process which is to be invoked each time a
new permutation is ready. In the nonre-
cursive version of Algorithm 1 above, if we
put a call to process at the beginning and
another call to process after the exchange
statement, then process will be executed
N! times, once for each permutation. From
now on, we will explicitly include such
calls to process in all of our programs.

The same transformations that we ap-
plied to Algorithm 1 yield this nonrecur-
sive version of Heap's method for generat-
ing and processing all permutations of
P[1], • • • ,P[N]:

Algorithm 2 (Heap)
~:=N; loop: c[~]:=l while ~>2:~:=~-1 repeat;
process;
l oop '

if c/t] <t
then i f t odd then k:=l else k:=c[t] end[f;

P[t]:=:P[k];
c[l]:=c[t] + l; ~:=2;
process,

else c[~]:=l; ~:=~+1
end[f;

while I ~ N repeat;

This can be a most efficient algorithm
when implemented properly. In Section 3
we examine further improvements to this
algorithm and its implementation.

Adjacent Exchanges
Perhaps the most prominent permutation
enumeration algorithm was formulated in
1962 by S. M. Johnson [20] and H. F. Trot-
ter [45], apparently independently. They
discovered that it was possible to generate
all N! permutations of N elements with
N! -1 exchanges of adjacent elements.

Computing Surveys, Col 9, No 2, June 1977

1 4 4 • R . Sedgewick

A---~ B B B B

i.!-Ti i !
E E ' E E T A

DL~GRAM 6

The method is based on the natural idea
that for every permutation of N - 1 ele-
ments we can generate N permutations of
N elements by inserting the new element
into all possible positions. For example, for
five elements, the first four exchange mod-
ules in the permutation network are as
shown in Diagram 6. The next exchange is
P[1]:=:P[2], which produces a new permu-
tation of the elements originally in P[2],
P[3], P[4], P[5] (and which are now in P[1],
P[2], P[3], P[4]). Following this exchange,
we bring A back in the other direction, as
illustrated in Diagram 7. Now we ex-
change P[3]:=:P[4] to produce the next
permutation of the last four elements, and
continue in this manner until all 4! permu-
tations of the elements originally in P[2],
P[3], P[4], P[5] have been generated. The
network makes five new permutations of
the five elements for each of these (by
putting the element originally in P[1] in
all possible positions), so that it generates
a total of 5! permutations.

Generalizing the description in the last
paragraph, we can inductively build the
network for N elements by taking the net-
work for N - 1 elements and inserting
chains of N - 1 exchange modules (to sweep
the first element back and forth) in each
space between exchange modules. The
main complication is that the subnetwork
for N - 1 elements has to shift back and
forth between the first N - 1 lines and the
last N - 1 lines in between sweeps. Figure
4 shows the networks for N = 2,3,4. The
modules in boxes identify the subnetwork:
if, in the network for N, we connect the
output lines of one box to the input lines of
the next, we get the network for N - 1 .

A. I B

C-
D
E

: : 2 : T : T : :
D I A a ~ 7.

Nffi4

N=2

H

N=

A B

B A

A BC

BA C

BCA

C BA

CAB

ACB

ABCD

BAC D

BCAD

BCDA

C BDA

C BA D

CABD

ACBD

A C DB

CADB

CDA B

CDBA

DC BA

DCAB

DAC B

ADCB

ADBC

D / k B C
D B A C

D B C A
B D C A

B D A C
BA DC
A B D C

FIGURE 4. Johnson-Tro t t e r a lgor i thm for N = 2,
3, 4.

Continuing the example above, we get the
full network for N = 5 shown in Figure 5.
By connecting the boxes in this network,
we get the network for N = 4.

To develop a program to exchange ac-
cording to these networks, we could work
down from a recursive formulation as in
the preceding section, but instead we shall
take a bottom-up approach. To begin,
imagine that each exchange module is la-
belled with the number of the network in
which it first appears. Thus, for N = 2 the
module would be numbered 2; for N = 3
the five modules would be labelled 3 3 2 3 3 ;
for N = 4 the 23 modules are numbered

4 4 4 3 4 4 4 3 4 4 4 2 4 4 4 3 4 4 4 3 4 4 4 ;
for N ~ 5 we insert 5 5 5 5 between the
numbers above, etc. To write a program to
generate this sequence, we keep a set of
incrementing counters c[i], 2 < i <- N ,
which are all initially 1 and which satisfy

Computing Surveys, Vol. 9, No. 2, June 1977

P e r m u t a t i o n G e ne ra t i on M e t h o d s • 145

[~ ! I II llll II lllIl. II]Ill ll.l i,,, :: ',,",',' ' " "

FIGURE 5 Johnson-Trot ter a lgori thm for N = 5.

1 < c[i] <- i. We fmd the highest index i
whose counter is not exhausted (not yet
equal to i), output it, increment its
counter, and reset the counters of the
larger indices:

i:=1; loop while i<-N: i:=~+1; c[i]:=l repeat;
c[1]: =0;
loop:

i :=N;
loop while c[,]=i: c[i]:=l; i : = , - i repeat;

while ,>1:
comment exchange module ~s on level ~ ;

c[~]:=c[~] + l
repeat;

When i becomes 1, the process is com-
p l e t ed - the statement c[1] = 0 terminates
the inner loop in this case. (Again, there
are simple alternatives to this with "event
variables" [24], or in assembly language.)

Now, suppose that we have a Boolean
variable d i N] which is true if the original
P[1] is travelling from P[1] down to P[N]
and false if it is travelling from P[N] up to
P[1]. Then, when i = N we can replace the
comment in the above program by

if d[N] then k:=c[N] else k :=N-c[N] endif;
P[k]:,= :P[k + 1];

This will take care of all of the exchanges
on level N. Similarly, we can proceed by
introducing a Boolean d [N-1] for level
N - 1 , etc., but we must cope with the fact
that the elements originally in
P[2] , . . . ,PIN] switch between those loca-
tions and P[1] , . . . ,P [N-1] . This is han-
dled by including an offset x which is in-
cremented by 1 each time a d[i] switches
from false to true. This leads to:
A l g o r i t h m 3 (Johnson-Trotter)

~:=1;
loop while ~<N: ~:=~+1; c[~]:=l;

d[i]:= true; repeat;
c[1]:=0;
process;
loop:

i:=N; x:=0;
loop while c[~]=~:

i f not d/~] then x:=x+l endif;
d[i]:= not d/z]; c[d:=l; i .=~- l;

repeat;

while i>1:
if d/~] then k:=c[~]+x

else k:=~-c[~]+x endif;
P[k]:=:P[k + 1];
process;
c[i]:=c[i] + l;

repeat;
Although Johnson did not present the al-
gorithm in a programming language, he
did give a very precise formulation from
which the above program can be derived.
Trotter gave an ALC~OL formulation which
is similar to Algorithm 3. We shall exam-
ine alternative methods of implementing
this algorithm later.

An argument which is often advanced in
favor of the Johnson-Trotter algorithm is
that, since it always exchanges adjacent
elements, the proc e s s procedure might be
simpler for some applications. It might be
possible to calculate the incremental effect
of exchanging two elements ra ther than
reprocessing the entire permutation. (This
observation could also apply to Algorithms
1 and 2, but the cases when they exchange
nonadjacent elements would have to be
handled differently.)

The Johnson-Trotter algorithm is often
inefficiently formulated [5, 10, 12] because
it can be easily described in terms of the
values of elements being permuted, rather
than their positions. If P[1],. • ", P[N] are
originally the integers 1 , - . . , N, then we
might try to avoid maintaining the offset x
by noting that each exchange simply in-
volves the smallest integer whose count is
not yet exhausted. Inefficient implementa-
tions involve actually searching for this
smallest integer [5] or maintaining the in-
verse permutation in order to find it [10].
Both of these are far less efficient than the
simple offset method of mgintaining the
indices of the elements to be exchanged
given by Johnson and Trotter, as in Algo-
r i thm 3.

Factorial Counting
A careful reader may have become suspi-
cious about similarities between Algo-

Computing Surveys, Vol. 9, No. 2, June 1977

146 • R . Sedgewick

rithms 2 and 3. The similarities become
striking when we consider an alternate
implementation of the Johnson-Trotter
method:

Algor i t hm 3a (Alternate Johnson-Trotter)
z" =N;
loop: c[t]:=l; d/l] :=true; while l > l : ~.=~ - 1 repeat;
process,
loop:

i f c[t] < N + l - I
then if d / d then k.=c[~]+x

else k : = N + l - t - c [t] + x endif;
P[k]: = :P [k + 1];
process;
c[t]:=c[~]+l; ~:=1; x:=0;
else if not d/t] then x :=x+l endif;

c[z]:=l; ~:=z+l; d[t]:= not d /d ;
endif;

while ~-<N repeat;

This program is the result of two simple
transformations on Algorithm 3. First,
change i to N + I - ~ everywhere and rede-
fme the c and d arrays so that c[N+l -~],
d [N +1 - i] in Algorithm 3 are the same as
c[i], d[i] in Algorithm 3a. (Thus a refer-
ence to c[i] in Algorithm 3 becomes
c [N + l - i] when i is changed to N + I - i ,
which becomes c[i] in Algorithm 3a.) Sec-
ond, rearrange the control structure
around a single outer loop. The condition
c[i] < N + l - i in Algorithm 3a is equiva-
lent to the condition c[i] < i in Algorithm
3, and beth programs perform the ex-
change and process the permutation in
this case. When the counter is exhausted
(c[i] = N + I - ~ in Algorithm 3a; c[i] = i in
Algorithm 3), both programs fLx the offset,
reset the counter, switch the direction, and
move up a level.

If we ignore statements involving P, k
and d, we fmd that this version of the
Johnson-Trotter algorithm is identical to
Heap's method, except that Algorithm 3a
compares c[i] w i th N + I - i and Algorithm
2 compares it with i. (Notice that Algo-
r i thm 2 still works properly ff in beth its
occurrences 2 is replaced by I .)

To appreciate this similarity more fully,
let us consider the problem of writing a
program to generate all N-digit decimal
numbers: to "count" from 0 to 9 9 . . . 9 =
10N-1. The algorithm that we learn in
grade school is to increment the right-most

digit which is not 9 and change all the
nines to its right to zeros. If the digits are
stored in reverse order in the array
c[N],c[N - 1], . . . ,c[2],c[1] (according to
the way in which we customarily write
numbers) we get the program

t:=N, loop c[~]:=O while t > l l : = ~ - I repeat;
loop:

i f c[~]<9 then c[d:=c[t]+ l; z =1
else c[z]:=O; ~ = z + l

endif;
while ~<-N repeat;

From this program, we see that our per-
mutation generation algorithms are con-
trolled by this simple counting process, but
in a mixed-radix number system. Where
in ordinary counting the digits satisfy 0 -<
c[i] <- 9, in Algorithm 2 they satisfy 1 -<
c[i] -< i and in Algorithm 3a they satisfy 1
<- c[i] <- N - i + l . Figure 6 shows the val-
ues of c [1] , . . . ,c[N] when process is en-
countered in Algorithms 2 and 3a for N =
2,3,4.

Virtually all of the permutation genera-
tion algorithms that have been proposed
are based on such "factorial counting"
schemes. Although they appear in the lit-
erature in a variety of disguises, they all
have the same control structure as the
elementary counting program above. We
have called methods like Algorithm 2 re-
cursive because they generate all se-
quences of c[1] , . . . , c [i -1] in-between in-
crements of c[i] for all i; we shall call
methods like Algorithm 3 iterative because
they iterate c[i] through all its values in-
between increments of c[i + 1], • • .,c[N].

Loopless Algorithms

An idea that has attracted a good deal of
attention recently is that the Johnson-
Trotter algorithm might be improved by
removing the inner loop from Algorithm 3.
This idea was introduced by G. Ehrlich
[10, 11], and the implementation was re-
fined by N. Dershowitz [5]. The method is
also described in some detail by S. Even
[12].

Ehrlich's original implementation was
complex, but it is based on a few standard
programming techniques. The inner loop

Computing Surveys, Vol 9, No 2, June 1977

N=4
i 111

1121

• 1211

1221

1311

1321

N - 2 2111
11

2121
21

2211

2221

2311

N = 3 2321
111

3111
121

3121
211

3211
221

3221
311

3311
321

3321

4111

4121

42 ll

4221

4811

4321
(a)

Fmu~ 6. Factorial counting:
rithm 3a (iterative).

c[N], . . . , c[1]. (a)

P e r m u ~ n G e ~ r a ~ n M e t ~ • 147
~=4

iiii

1112

1113

1114

1121

1122

N = 2 1123
ii

1124
12

1131

1132

1133

N = 3 1134
iii

1211
112

1212
113

1213
121

1214
122

1221
123

1222

1223

1224

1231

1 2 3 2

1 2 3 3

1 2 3 4
(b)

Using Mgorithm 2 (r e c ~ l v e) . (b) Using M g o -

in Algorithm 3 has three main purposes: to
find the highest index whose counter is not
exhausted, to reset the counters at the
larger indices, and to compute the offset x.
The first purpose can be served by main-
taining an array s[i] which tells what the
next value of i should be when c[i] is ex-
hausted: normally s[i] = i - 1 , but when
c[i] reaches its limit we set s [i + l] to s[i].
To reset the other counters, we proceed as
we did when removing the recursion from
Algorithm 1 and reset them just a l~r they
are incremented, rather than waiting un-
til they are needed. Finally, rather than
computing a "global" offset x, we can
maintain an array x[i] giving the current
offset at level i: when d[i] switches from
false to true, we increment x[s[i]]. These
changes allow us to replace the inner
"loop. . .repeat" in Algorithm 3 by an
"ft. • • endif'.

Algor i thm 3b (Loopless Johnson-Trotter)
: :=0;
loop while : < N : i: = : + 1; c[d: =1 ; d / d : =true;

s[i]:=:- l; x[i]:=O repeat;
process;
loop:

s[N + I].=N; x / :] :=0 ;
i f c[Q = i then

if not d/ i]
then x[s[Q] : =x[s[Q] +1; endif;

d/t]: =not d/d; c[i]: = 1;
s i t + 1]: =s[i]; s[i]: = : - 1;

endff;
t:=s[N + l];

while :>1:
if d /d then k: =c[~]+x[d

else k: =:-c[d+x[i] endif;
P[k] := :P[k + 1];
process;
c[Q: =c[d + 1;

repeat;
This algorithm differs from those de-
scribed in [10, 11, 12], which are based on

Computing Surveys, Vol. 9, No 2, June 1977

148 * R. Sedgewick

the less efficient implementations of the
Johnson-Trotter algorithm mentioned
above. The loopless formulation is pur-
ported to be an improvement because each
iteration of the main loop is guaranteed to
produce a new permutation in a ffLxed
number of steps.

However, when organized in this form,
the unfortunate fact becomes apparent
that the loopless Algorithm 3b is slower
than the normal Algorithm 3. Loopfree im-
plementation is not an improvement at all!
This can be shown with very little analysis
because of the similar structure of the al-
gorithms. If, for example, we were to count
the total number of times the statement
c[i]:=l is executed when each algorithm
generates all N! permutations, we would
find that the answer would be exactly the
same for the two algorithms. The loopless
algorithm does not eliminate any such as-
signments; it just rearranges their order of
execution. But this simple fact means that
Algorithm 3b must be slower than Algo-
r i thm 3, because it not only has to execute
all of the same instructions the same num-
ber of times, but it also suffers the over-
head of maintaining the x and s arrays.

We have become accustomed to the idea
that it is undesirable to have programs
with loops that could iterate N times, but
this is simply not the case with the John-
son-Trotter method. In fact, the loop iter-
ates N times only once out of the N! times
that it is executed. Most often (N-1 out of
every N times) it iterates only once. If N
were very large it would be conceivable
that the very few occasions that the loop
iterates many times might be inconven-
ient, but since we know that N is small,
there seems to be no advantage whatso-
ever to the loopless algorithm.

Ehrlich [10] found his algorithm to run
"twice as fast" as competing algorithms,
but this is apparently due entirely to a
simple coding technique (described in Sec-
tion 3) which he applied to his algorithm
and not to the others.

Another Iterative Method
In 1976, F. M. Ives [19] published an ex-
change-based method like the Johnson-
Trotter method which does represent an
improvement. For this method, we build

I I ~ - ^ :[: __l T il[l I : L_:
DIAGRAM 8

up the network for N elements from the
network for N - 2 elements. We begin in
the same way as in the Johnson-Trotter
method. For N = 5, the first four ex-
changes are as shown in Diagram 6. But
now the next exchange is P[1]:=:P[5],
which not only produces a new permuta-
tion of P[1], . . . ,P[4], but also puts P[5]
back into its original position. We can per-
form exactly these five exchanges four
more times, until, as shown in Diagram 8,
we get back to the original configuration.

At this point, P[1] , . . . ,P[4] have been
rotated through four permutations, so that
we have taken care of the case N = 4. If we
(inductively) permute three of these ele-
ments (Ives suggests the middle three)
then the 20 exchanges above will give us
20 new permutations, and so forth. (We
shall later see a method which makes ex-
clusive use of this idea that all permuta-
tions of N elements can be generated by
rotating and then generating all permuta-
tions of N - 1 elements.) Figure 7 shows the
networks for N = 2,3,4; the full network
for N = 5 is shown in Fig. 8. As before, if
we connect the boxes in the network for N,
we get the network for N - 2 . Note that the
exchanges immediately preceding the
boxes are redundant in that they do not
produce new permutations. (The redun-
dant permutations are identified by paren-
theses in Fig. 7.) However, there are rela-
tively few of these and they are a small
price to pay for the lower overhead in-
curred by this method.

In the example above, we knew that it
was time to drop down a level and permute
the middle three elements when all of the
original elements (but specifically P[1]
and P[5]) were back in position. If the ele-
ments being permuted are all distinct, we
can test for this condition by intially sav-
ing the values of P[1], • • • ,P[N] in another
array Q[1],-. . ,Q[N]:

Algori thm 4 (Ives)
~:=N;
loop: c[~]'=l; Q[~].=P[~], while ~<1. ~ =~-1 repeat;
process,

Computing Surveys, Vol 9, No 2, June 1977

Permutation Generation Methods • 149

loop .
i f c[t]<N + l - t
t h e n P[c[t]]: =:P[c[t] + 1]

c[t]'=c[t]+ l; t : = l ;
process;

e l s e P [z] . = : P [N + 1 - t] ;
c[t]: =t ;
i f P[N + I - t]=Q[N + I - t] t h e n t:=t + l

e l se t : = l ;
process

endi f ,
end i f ,

w h i l e t < N + l - z r e pe a t ,

This program is very similar to Algo-
r i thms 2 and 3a, but it doesn't fall immedi-
ately into the "factorial counting" schemes
of these programs, because only hal f of the

% = 2

B A
(B A)

% = 4

.....-i

l

,• A BC A

B AC C

BC A

A C B C

CAB A

C BA

FmURE 7 Ires' a l g o r i t h m for N =

A BC D

BA C D

BC A D

BC DA

A C D B

C A D B

C DA B

C D B A

A D B C

DA BC

D B A C

D BC A

(A B C D)

C B D

A B D

C BAD

B DA

BDC

BA D C

B D A C

B D C A

A DC B

DA C B

DC A B

D C BA

(A C B D)

(A B C D)

2,3,4

counters are used. However, we can use
counters rather than the test P [N + I - i] =
Q [N + 1 - i] , since this test a lways succeeds
after exactly t - 1 sweeps. We are immedi-
ately led to the implementation:

Algorithm 4a (Alternate Ives)
t =N; loop: c[z]:=l; w h i l e t > l : t : = t - 1 repea t ,
process;
l o o p

i f c [t]<N + l - t
t h e n i f t odd t h e n P[c[t]]:=:P[c[z]+l]

e l se P [t] : = : P [N + l - t] end i f ,
c[l]'=c[l]+ l, t : = l ;
process;

e l s e c[z]:=l; t ' = t + l ;
endi f ,

w h i l e t -<N repeat ;

This method does not require that the ele-
ments being permuted be distinct, but it is
s l ight ly less efficient than Algori thm 4 be-
cause more count ing has to be done.

Ives' a lgorithm is more efficient than
the Johnson-Trotter method (compare Al-
gori thm 4a wi th Algor i thm 3a) since it
does not have to mainta in the array d or
offset x. The alternate implementat ion
bears a remarkable resemblance to Heap's
method (Algorithm 2). Both of these algo-
r i thms do little more than factorial count-
ing. We shall compare them in Section 3.

2. OTHER TYPES OF ALGORITHMS

In this section we consider a variety of
algorithms which are not based on simple
exchanges between elements . These algo-
r i thms general ly take longer to produce all
permutat ions than the best of the methods
already described, but they ave worthy of
s tudy for several reasons. For example, in
some s i tuations it may not be necessary to
generate all permutations, but only some
"random" ones. Other algorithms may be
of practical interest because they are based
on e lementary operations which could be
as efficient as exchanges on some com-
puters. Also, we consider algorithms that
generate the permutat ions in a particular
order which is of interest. All of the algo-
r i thms can be cast in terms of the basic

r ii i[ii 1,~1 ii][1[Ira 11 I[II b I[II II L,I II II II. Id.]1 II 1I I~
i Jl ll, pl i~lt ~{iili]~ E::E ~l II Jl ~,l II JJ IJ ~l~ II [l ,~ ,[, ,I 1 ll, ll~ I~! l [I I l ifl I J I l l ' i f [I l } I ! 1 [I)1 I I I l I q l l ' l g ~1 u [[l[[I t~

II 11 II I P I[II i l ~1 ~ II II li I P II II II I P [I li ~ll Ig I I

FIGURE 8 Ives' a l g o r i t h m for N = 5

Computing Surveys, Vol 9, No 2, June 1977

150 • R . Sedgewick

"factorial counting" control structure de-
scribed above.

Nested Cycling
As we saw when we examined Ives' algo-
rithm, N different permutations of
P[1],. • • ,P[N] can be obtained by rotating
the array. In this section, we examine per-
mutation generation methods which are
based, solely on this operation. We assume
that we have a primitive operation

rotate(i)

which does a cyclic left-rotation of the ele-
ments P[1] , . . . ,P[i] . In other words, ro-
tate(i) is equivalent to

t:=P[1]; k:=2;
loop while k<t: P[k-1]:=P[k] repeat;
P[i]: =t;

The network notation for rotate(5) is given
by Diagram 9. This type of operation can
be performed very efficiently on some com-
puters. Of course, it will generally not be
more efficient than an exchange, since ro-
tate(2) is equivalent to P[1]:=:P[2].

B ~ - - C
c ~ D

E-'~
DIAGRAM 9.

The most straightforward way to make
use of such an operation is a direct recur-
sive implementation like Algorithm 1:
procedure permutattons (N);

begin c:= 1;
loop:

if N>2 then permutattons(N-1)
end[f;
rotate(N);

while c<N:
process;
C : = c + l

r e p e a t ;
end;

W h e n the r e c u r s i o n is r e m o v e d f rom t h i s
p r o g r a m in the w a y t h a t r e m o v e d t he re-
cursion from Algorithm 1, we get an old
algori thm which was discovered by C.
Tompkins and L. J. Paige in 1956 [44]:
A l g o r i t h m 5 (Tompkins-Paige)

i.=N; loop: c[i]=l while t>2 : t := t -1 repeat;
process;

loop:
rotate(i)
if c[t]<t then c[t]: =c[i]+ 1; i: =2;

process;
else c[t]:=l; t :=t+l

end[f;
while t<-N repeat;

This is nothing more than a simple count-
ing program with rotation added. The ro-
t a t ion ne tworks and p e r m u t a t i o n se-
quences generated by this algorithm are
given in Fig. 9. As in Fig. 7, the parenthes-
ized permutations are redundant permuta-
tions produced in the course of the compu-
tation, which are not passed through the
process macro. The algorithm is not as
inefficient as it may seem, because most of
the rotations are short, but it clearly will
not compete with the algorithms in Sec-
tion 1. This method apparently represents
the earliest at tempt to get a real computer
to generate permutations as quickly as
possible. An ALGOL implementation was
given by Peck and Schrack [33].

An interesting feature of the Tompkins-
Paige method, and the reason it generates
so many redundant sequences, is that the
recursive procedure restores the permuta-
tion to the order it had upon entry. Pro-
grams that work this way are called back-
track programs [26, 27, 46, 48]. We can
easily apply the same idea to exchange
methods like Algorithm 1. For example:

procedure permutattons(N) ;
begin c" = 1;

loop:
P[N]:=:P[c];
if N>2 then permutatmns(N-1)

else process end[f;
P[c]: = :P[N];

while c<N:
C : = C + I

repeat;
end;

A procedure like this was given by C. T.
Fike [13], who also gave a nonrecursive
version [37] which is similar to a program
developed independently by S. Pleszczyfi-
ski [35]. These programs are clearly less
efficient than the methods of Section 1,
which have the same control structure but
require many fewer exchanges.

Tompkins was careful to point out that
it is often possible easily to achieve great
savings with this type of procedure. Often,

Computing Surveys, Vol. 9, No. 2, June 1977

N=2

H
N 3

--4

--4
¢

....,

FIGURE 9.
3,4.

A B

B A

(A B)

A BC

BA C

(A BC)

BCA

C BA

(B C A)

CAB

ACB

(C AB)

(A B C)

N=4

A B

BA

(A B

B C

C B

(B ¢

CA

AC

(C A

(A B

B C

C B

(B C

C D

DC

(C D

DB

B D

(D B

(B C

C D

DC

(C D

DA

A D

(DA

AC

CA

(A C

(C D

DA

A D

(D A

A B

B A

(A B

B D

D B

(B D

(D A

(A BC

Tompkins-Pa,ge algorithm for N

C D

C D

CD)

A O

A D

A D)

B D

B D

B D)

CD)

DA

DA

DA)

B A

BA

BA)

C A

CA

CA)

OA)

A B

h B

AB)

C B

C B

CB)

D B

DB

D B)

A B)

BC

BC

BC)

DC

D C

DC)

A C

A C

AC)

BC)

D)

= 2,

proces s involves selecting a small set of
permutations satisfying some simple crite-
ria. In certain cases, once a permutation is
found not to satisfy the criteria, then the

P e r m u t a t i o n Genera t ion M e thods • 151

permutations generated by permuting its
initial elements will not satisfy the crite-
ria either, so the exchanges and the call
p e r m u t a t m n s (N - 1) can be skipped. Thus
large numbers of permutations never need
be generated. A good backtracking pro-
gram will eliminate nearly all of the proc-
essing (see [44] for a good example), and
such methods are of great importance in
many practical applications.

Cycling is a powerful operation, and we
should expect to find some other methods
which use it to advantage. In fact, Tomp-
kins' original paper [44] gives a general
proof from which several methods can be
constructed. Remarkably, we can take Al-
gorithm 5 and switch to the counter sys-
tem upon which the iterative algorithms
in Section 2 were based:

t:=N; loop: c[t]:=l w h i l e t > l . t : = t - 1 repeat;
process;
loop:

rotate(N +1 - t);
i f c / d < N + l - t then c[t]:=c[t]+l; t : = l ;

process;
else c[t]:=l; t : = t + l

endif;
while z-<N repeat,

Although fewer redundant permutations
are generated, longer rotations are in-
volved, and this method is less efficient
than Algorithm 5. However, this method
does lend itself to a significant simplifica-
tion, similar to the one Ives used. The
condition c[i] = N + I - t merely indicates
that the elements in P[1] ,P[2] , . . . ,
P [N + I - i] have undergone a full rota-
t i o n - t h a t is, P[N+ l - t] is back in its orig-
inal position in the array. This means that
if we initially set Q[i] = P[i] for 1 -< i <- N,
then c[i] = N + l - i is equivalent to
P [N + I - i] = Q [N + I - i] . But we have now
removed the only test on c[i] , and now it is
not necessary to maintain the counter ar-
ray at all! Making this simplification, and
changing t to N + I - i , we have an algo-
rithm proposed by G. Langdon in 1967 [25],
shown in Fig. 10.

A l g o r i t h m 6 (Langdon)

t : = l ; loop: Q[I] :=P[~] while t < N . ~ : = t + l repeat,
process;

Computing Surveys, Vol 9, No 2, June 1977

152 • R. Sedgewick
loop:

rotate(t);
i f P[z]=Q[t] then t : = N else t . = t - 1 endif;
process;

while t->l repeat;

This is definitely the most simply ex-
pressed of our permutation generation al-
gorithms. If P [1] , . . . , P [N] are initially
1 , . . . , N , then we can eliminate the ini-
tialization loop and replace Q[i] by i in the
main loop. Unfortunately, this algorithm
runs slowly on most computers -on ly

N=2

B A

(A B)

N =

FIGURE 10.

A BC

B C A

CAB

(A B C)

BAC

AC B

CBA

(B A C)

(A B C)

N=4

A

B

C

D

(A

B

C

A

D

(B

C

A

B

D

(C A

(A B

BA

A C

C D

D B

(B A

A C

C B

B D

DA

(A C

C B

BA

AD

D C

(C B

(BA

BC D

C DA

DAB

A B C

B C D)

C A D

A D B

DBC

B C A

CAD)

ABD

B D C

DCA

CAB

B D)

C D)

C D

D B

BA

A C

CD)

B D

DA

A C

C B

B D)

A D

D C

C B

BA

A D)

CD)

(A B C D)

Langdon's algorithm for N = 2 , 3 , 4 .

when very fast rotation is available is it
the method of choice. We shall examine
the implementation of this algorithm in
detail in Section 3.

Lexicographic Algorithms
A particular ordering of the N! permuta-
tion of N elements which is of interest is
"lexicographic", or alphabetical, ordering.
The lexicographic ordering of the 24 per-
mutations of A B C D is shown in Fig.
l la . "Reverse lexicographic" ordering, the
result of reading the lexicographic se-
quence backwards and the permutations
from right to left, is also of some interest.
Fig. l lb shows the reverse lexicographic
ordering of the 24 permutations of
A B C D .

The natural definition of these orderings
has meant that many algorithms have
been proposed for lexicographical permu-
tation generation. Such algorithms are in-
herently less efficient than the algorithms
of Section 1, because they must often use
more than one exchange to pass from one
permutation to the next in the sequence
(e.g., to pass from A C D B to A D B C
in Fig. l la). The main practical reason
that has been advanced in favor of lexico-
graphic generation is that, in reverse or-
der, all permutations of P [1] , . - - , P I N - l]
are generated before P[N] is moved. As
with backtracking, a processing program
could, for example, skip (N - l) ! permuta-
tions in some instances. However, this
property is shared by the recursive algo-
rithms of Section 1 - in fact, the general
structure of Algorithm 1 allows P[N] to be
filled in any arbitrary order, which could
be even more of an advantage than lexico-
graphic ordering in some instances.

Nevertheless, lexicographic generation
is an interesting problem for which we are
by now well prepared. We shall begin by
assuming that P [1] , . . . P [N] are distinct.
Otherwise, the problem is quite different,
since it is usual to produce a lexicographic
listing with no duplicates (see [3, 9, 39].

We shall fmd it convenient to make use
of another primitive operation, reverse(i).
This operation inverts the order of the ele-
ments in P[1], • • • P[i]; thus, reverse(i) is
equivalent to

Computing Surveys, Vol 9, No. 2, June 1977

ABCD ABCD

ABDC BACD

ACBD ACBD

ACDB CABD

ADBC BCAD

ADCB CBAD

BACD ABDC

BADC BADC

BCAD ADBC

BCDA DABC

BDAC BDAC

BDCA DBAC

CABD ACDB

CADB CADB

CBAD ADCB

CBDA DACB

CDAB CDAB

CDBA DCAB

DABC BCDA

DACB CBDA

DBAC BDCA

DBCA DBCA

DCAB CDBA

DCBA DCBA

(a) (b)

~o t ra~ 11. ~ m ~ g r a p ~ c o ~ e H n g of A B C D.
(a) In na tura l o ~ e r . (b) In r e v e r ~ order.

~:=i;

loop w h i l e ~<N+I -~ :
P[~]:=:P[N+I-~]; ~:=t+l repeat;

This operation will not be particularly effi-
cient on most real computers, unless spe-
cial hardware is available. However, it
seems to be inherent in lexicographic gen-
eration.

The furst algorithm that we shall con-
sider is based on the idea of producing each
permutation from its lexicographic prede-
cessor. Hall and Knuth [15] found that the
method has been rediscovered many times
since being published in 1812 by Fischer
and Krause [14]. The ideas involved first
appear in the modern l i terature in a rudi-
mentary form in an algorithm by G.
Schrack and M. Shimrat [40]. A full for-
mulation was given by M. Shen in 1962
[41, 42], and Phillips [34] gives an "optim-
ized" implementation. (Dijkstra [6] cites
the problem as an example to illustrate a

Permutat ion Generation Methods • 153

"dramatic improvement in the state of the
art" of computer programming since the
algorithm is easily expressed in modern
languages; the fact tha t the method is over
160 years old is perhaps a more sobering
comment on the state of the ar t of com-
puter science.)

The direct lexicographic successor of the
permutation

B A C F H G D E

is clearly
B A C F H G E D ,

but what is the successor of this permuta-
tion? After some study, we see that
H G E D are in their lexicographically
highest position, so the next permutat ion
must begin as B A C G • • -. The answer
is the lexicographically lowest permuta-
tion that begins in this way, or

B A C G D E F H .

Similarly, the direct successor of
H F E D G C A B

in reverse lexicographic order is

D E G H F C A B ,

and its successor is
E D G H F C A B .

The algorithm to generate permutations
in reverse lexicographic order can be
clearly understood from this example. We
first scan from lei~ to right to fred the first
i such that P[~] > P[i -1] . If there is no
such i, then the elements are in reverse
order and we terminate the algorithm
since there is no successor. (For efficiency,
it is best to make P[N+I] larger than all
the other e l e m e n t s - w r i t t e n P[N+I] =
~ - a n d terminate when i = N + I .) Other-
wise, we exchange P[i] with the next-low-
est element among P [1] , . . - , P [i - 1] and
then reverse P[1],. • • ,P[i-1] . We have

Algor i thm 7 (Fischer-Krause)
P [N + I] = ~ ;
process;
loop.

t:=2; loop while P[~]<P[~-I]: ~:=~+1 repeat;
while t<N;

j : = l ; loop while P[j]>P[i] : j := j + 1 repeat;
P[~]:=:P~];

Computing Surveys, Vol. 9, No 2, June 1977

154 • R . S e d g e w i c k

reverse(~ -1);
process;

repeat;

Like the Tompkins-Paige algorithm, this
algorithm is not as inefficient as it seems,
since it is most often scanning and revers-
ing short strings.

This seems to be the first example we
have seen of an algorithm which does not
rely on ~'factorial counting" for its control
structure. However, the control structure
here is overly complex; indeed, factorial
counters are precisely what is needed to
eliminate the inner loops in Algorithm 7.

A more efficient algorithm can be de-
rived, as we have done several times be-
fore, from a recursive formulation. A sim-
ple recursive procedure to generate the
permutations of P[1] , . - . ,P[N] in reverse
lexicographic order can be quickly devised:

procedure lexperms(N) ;
begin c:= 1;

loop:
if N > 2

then lexperms(N-1) end[f;
while c<N:

P[N]:=:P[c];
reverse(N-i) ;
c:=c+ l;

repeat;
end;

Removing the recursion precisely as we
did for Algorithm 1, we get

A l g o r i t h m 8 (Ord-Smith)
~:=N; loop c[~].=l; while ~>2:~:=~-1 repeat;
process;
loop:

if c[l] <~ then P[~]:='P[c[l]], reverse(~-l) ,
c[~]:=c[z]+ l; ~:=2;
process;

else c[l]:=l; ~:=~+1
end[f;

while ~-<N repeat;

This algorithm was first presented by R. J.
Ord-Smith in 1967 [32]. We would not ex-
pect a priori to have a lexicographic algo-
r i thm so similar to the normal algorithms,
but the recursive formulation makes it ob-
vious.

Ord-Smith also developed [31] a
"pseudo-lexicographic" algorithm which
consists of replacing P[~]:=:P[c[i]]; re-
v e r s e (i - i) ; by reverse(i) in Algorithm 8.

There seem to be no advantages to this
method over methods like Algorithm 1.
Howell [17, 18] gives a lexicographic
method based on treat ing P[1], • • • ,P[N] as
a base-N number, counting in base N, and
rejecting numbers whose digits are not dis-
tinct. This method is clearly very slow.

Random Permutations

I f N is so large that we could never hope to
generate all permutations of N elements,
it is of interest to study methods for gener-
ating ~random" permutations of N ele-
ments. This is normally done by establish-
ing some one-to-one correspondence be-
tween a permutat ion and a random num-
ber between 0 a n d N ! - l . (A full t rea tment
of pseudorandom number generation by
computer may be found in [22].)

First, we notice tha t each number be-
tween 0 and N ! - 1 can be represented in a
mixed radix system to correspond to an
array c [N] , c [N - 1] , . • • ,c[2] with 0 -< c[i] <-
~-1 for 2 -< i -< N. For example, 1000
corresponds to 1 2 1 2 2 0 since 1000 = 6!
+ 2.5! + 4! + 2.3! + 2.2!. For 0 -< n < N!,
we have n = c[2].1! + c[3].2! + . . . +
c[N]. (N- l) ! . This correspondence is easily
established through standard radix con-
version algorithms [22, 27, 47]. Alterna-
tively, we could fill the array by putt ing a
~'random" number between 0 and i - 1 in
c[i] for 2 <_ i <_ N .

Such arrays c [N] , c [N - 1] , . . . , c [2] can
clearly be generated by the factorial count-
ing procedure discussed in Section 1, so
that there is an implicit correspondence
between such arrays and permutations of
1 2 . . . N. The algorithms that we shall
examine now are based on more explicit
correspondences.

The fLrst correspondence has been at-
tr ibuted to M. Hall, Jr . , in 1956 [15], al-
though it may be even older. In this corre-
spendence, c[i] is defined to be the number
of elements to the left of i which are
smaller than it. Given an array, the fol-
lowing example shows how to construct
the corresponding permutation. To fmd
the permutation of 1 2 • • • 7 correspond-
ing to

1 2 1 2 2 0

Computing Surveys, Vol 9, No 2, June 1977

Permutation Generation Methods

we begin by writing down the first ele-
ment, 1. Since c [2] = 0, 2 must precede 1,
o r

2 1 .

Similarly, c [3] = 2 means that 3 must be
preceded by both 2 and 1:

2 1 3

Proceeding in this manner, we build up
the entire permutation as follows:

2 1 4 3
2 5 1 4 3
2 5 6 1 4 3
2 7 5 6 1 4 3

In general, if we assume that c[1] = 0, we
can construct the permutation P[1] , . . . ,
P[N] with the program

v = l ;
loop.

J:=~;
loop whilej>c[~]+l: PO].=P[j -1] ; repeat;
P[c/l]+ 1]:=~;
i ' =z+ l ;

while ~-<N repeat;
This program is not particularly efficient,
but the correspondence is of theoretic in-
terest. In a permutation P[1], . . - ,PIN] of
1,. • • ,N, a pair (i j) such that i < j and
P[i] > P0] is called an inversion. The
counter array in Hall's correspondence
counts the number of inversions in the
corresponding permutation and is called
an inversion table. Inversion tables are
helpful combinatorial devices in the study
of several sorting algorithms (see [23]).
Another example of the relationship be-
tween inversion tables and permutation
generation can be found in [7], where Dijk-
stra reinvents the Johnson-Trotter method
using inversion tables.

D. H. Lehmer [26, 27] describes another
correspondence that was def'med by D. N.
Lehmer as long ago as 1906. To find
the permutation corresponding to
1 2 1 2 2 0, we first increment each ele-
ment by 1 to get

2 3 2 3 3 1 .
Now, we write down 1 as before, and for
i = 2 , . - . , N , we increment all numbers
which are -> c[i] by 1 and write c[i] to the
left. In this way we generate

• 1 5 5

1
12

3 1 2
3 4 1 2

2 4 5 1 3
3 2 5 6 1 4

2 4 3 6 7 1 5

so that the permutation 2 4 3 6 7 1 5 cor-
responds to 1000. In fact, 2 4 3 6 7 1 5 is
the 1000th permutation of 1,. • • ,7 in lexi-
cographic order: there are 6! permutations
before it which begin with 1, then 2.5!
which begin 2 1 or 2 3, then 4! which be-
gin 2 4 1, then 2.3! which begin 2 4 3 1
or 2 4 3 5, and then 2.2! which begin
2 4 3 6 l o r 2 4 3 65 .

A much simpler method than the above
two was apparently first published by R.
Durstenfeld [8]. (See also [22], p. 125). We
notice that P[i] has i - 1 elements preced-
ing it, so we can use the c array as follows:

~:=N;
loop while ~->2: P[~]:=:P[c[l]+l]; ~:=z-1 repeat;

If we take P[1], .-- ,P[N] to be initially
1 , . . . , N , then the array 1 2 1 2 2 0 cor-
responds to the permutation
5 1 4 6 7 3 2. This method involves only
one scan through the array and is clearly
more efficient than the above two meth-
ods.

We could easily construct a program to
generate all permutations of 1 2 . . . N
by embedding one of the methods de-
scribed above in a factorial counting con-
trol structure as defined in Section 1. Such
a program would clearly be much slower
than the exchange methods described
above, because it must build the entire
array P[1], .- . ,P[N] where they do only a
simple exchange. Coveyou and Sullivan
[4] give an algorithm that works this way.
Another method is given by Robinson [37].

3. IMPLEMENTATION AND ANALYSIS

The analysis involved in comparing a
number of computer algorithms to perform
the same task can be very complex. It is
often necessary not only to look carefully
at how the algorithms will be imple-
mented on real computers, but also to
carry out some complex mathematical
analysis. Fortunately, these factors pres-

Computing Surveys, Vol 9, No 2, June 1977

156 • R . S e d g e w i c k

ent less difficulty than usual in the case of
permutation generation. First, since all of
the algorithms have the same control
structure, comparisons between many of
them are immediate, and we need only
examine a few in detail. Second, the anal-
ysis involved in determining the total run-
ning time of the algorithms on real com-
puters (by counting the total number of
times each instruction is executed) is not
difficult, because of the simple counting
algorithms upon which the programs are
based.

If we imagine that we have an impor-
tant application where all N! permuta-
tions must be generated as fast as possible,
it is easy to see that the programs must be
carefully implemented. For example, if we
are generating, say, every permutation of
12 elements, then every extraneous in-
struction in the inner loop of the program
will make it run at least 8 minutes longer
on most computers (see Table 1).

Evidently, from the discussion in Sec-
tion 1, Heap's method (Algorithm 2) is the
fastest of the recursive exchange algo-
rithms examined, and Ives' method (Algo-
rithm 4) is the fastest of the iterative ex-
change algorithms. All of the algorithms
in Section 2 are clearly slower than these
two, except possibly for Langdon's method
(Algorithm 6) which may be competitive
on machines offering a fast rotation capa-
bility. In order to draw conclusions com-
paring these three algorithms, we shall
consider in detail how they can be imple-
mented in assembly language on real com-
puters, and we shall analyze exactly how
long they can be expected to run.

As we have done with the high-level
language, we shall use a mythical assem-
bly language from which programs on real
computers can be easily implemented.
(Readers unfamiliar with assembly lan-
guage should consult [21].) We shall use
load (LD), stere (ST), add (ADD), subtract
(SUB), and compare (CMP) instructions
which have the general form

LABEL OPCODE REGISTER, OPERAND
(optional)

The first operand will always be a sym-
bolic register name, and the second oper-
and may be a value, a symbolic register

name, or an indexed memory reference.
For example, ADD 1,1 means "increment
Register I by r'; ADD l,J means "add the
contents of Register J to Register r'; and
ADD I,C(J) means "add to Register I the
contents of the memory location whose ad-
dress is found by adding the contents of
Register J to C". In addition, we shall use
control transfer instructions of the form

OPCODE LABEL

namely JMP (unconditional transfer); JL,
JLE, JE, JGE, JG (conditional transfer ac-
cording as whether the first operand in the
last CMP instruction was <, -<, =, ->, >
than the second); and CALL (subroutine
call). Other conditional jump instructions
are of the form

OPCODE REGISTER, LABEL

namely JN, JZ, JP (transfer if the specified
register is negative, zero, positive). Most
machines have capabilities similar to
these, and readers should have no diffi-
culty translating the programs given here
to particular assembly languages.

Much of our effort will be directed to-
wards what is commonly called code opti-
mization: developing assembly language
implementations which are as efficient as
possible. This is, of course, a misnomer:
while we can usually improve programs,
we can rarely "optimize" them. A disad-
vantage of optimization is that it tends to
greatly complicate a program. Although
significant savings may be involved, it is
dangerous to apply optimization tech-
niques at too early a stage in the develop-
ment of a program. In particular, we shall
not consider optimizing until we have a
good assembly language implementation
which we have fully analyzed, so that we
can tell where the improvements will do
the most good. Knuth [24] presents a fuller
discussion of these issues.

Many misleading conclusions have been
drawn and reported in the literature based
on empirical performance statistics com-
paring particular implementations of par-
ticular algorithms. Empirical testing can
be valuable in some situations, but, as we
have seen, the structures of permutation
generation algorithms are so similar that
the empirical tests which have been per-

Computing Surveys, Vol. 9, No 2, June 1977

Permutat ion Generation Methods • 157

formed have really been comparisons of
compilers, programmers, and computers,
not of algorithms. We shall see that the
differences between the best algorithms
are very subtle, and they will become most
apparent as we analyze the assembly lan-
guage programs. Fortunately, the assem-
bly language implementations aren't
much longer than the high-level descrip-
tions. (This turns out to be the case with
many algorithms.)

A Recursive Method (Heap)
We shall begin by looking at the imple-
mentation of Heap's method. A direct
"hand compilation" of Algorithm 2 leads
immediately to Program 1. The right-hand
side of the program listing simply repeats
the text of Algorithm 2; each statement is
attached to its assembly-language equiva-
lent.

This direct translation of Algorithm 2 is
more efficient than most automatic trans-
lators would produce; it can be further im-
proved in at least three ways. First, as we
have already noted in Section 1, the test
w h i l e i -< N need not be performed after
we have set i to 2 (if we assume N > 1), so
we can replace JMP WHILE in Program 1
by JMP LOOP. But this unconditional
jump can be removed from the inner loop
by moving the three instructions at LOOP
down in its place (this is called rotating
the l oop - see [24]). Second, the test for
whether i is even or odd can be made more
efficient by maintaining a separate Regis-
ter X which is defined to be 1 ff i is even
and - 1 ff i is odd. (This improvement ap-
plies to most computers, since few have a

j u m p i f even instruction.) Third, the varia-
ble k can be eliminated, and some time
saved, if C(I) is updated before the ex-

PROGRAM 1. DIRECT IMPLEMENTATION OF HEAP'S METHOD

LD Z,1
LD I,N

INIT ST Z,C(I)
CMP 1,2
JLE CALL
SUB 1,1
JMP INIT

CALL CALL PROCESS
LOOP LD J,C(I)

CMP J,I
JE ELSE

THEN LD T,I
AND T,1
JZ T,EVEN
LD K,1
JMP EXCH

EVEN LD K,J
EXCH LD T,P(I)

LD T1 ,P(K)
ST T1 ,P(I)
ST T,P(K)
ADD J,1
ST J,C(I)
LD 1,2
CALL PROCESS
JMP WHILE

ELSE ST Z,C(I)
ADD 1,1

WHILE CMP I,N
JLE LOOP

I = N ,
loop c[1] =1,

whi le />2
I =1-1 ,

repeat,
process,
loop

If c[/]
then

if / odd
then k =1
else k =c[i]

endlf,

P[I] = P[k],

ch] =cH+l,
1=2,
process,

else c[11"= I ,
I . = i + I endlf,

whlle I-<N
repeat,

Computing Surveys, Vol 9, No. 2, June 1977

158 • R. Sedgewick

change is made, freeing Register J. These
improvements lead to Program 2. (The
program uses the instruction LDN X,×
which simply complements Register X.)
Notice that even if we were to precompute
the index table, as in Algorithm 1, we
probably would not have a program as effi-
cient as Program 2. On computers with a
memory-to-memory move instruction, we
might gain further efficiency by imple-
menting the exchange in three instruc-
tions rather than in four.

Each instruction in Program 2 is la-
belled with the number of times it is exe-
cuted when the program is run to comple-
tion. These labels are arrived at through a
flow analysis which is not difficult for this
program. For example, CALL PROCESS
(and the two instructions preceding it)
must be executed exactly N! times, since
the program generates all N! permuta-
tions. The instruction at CALL can be
reached via JLE CALL (which happens ex-
actly once) or by falling through from the

P R O G R A M 2. IMPROVED IMPLEMENTATION OF
HEAP'S METHOD

LD Z,1 1
LD I,N 1

INIT ST Z,C(I) N - 1
CMP 1,2 N - 1
JLE CALL N - 1
SUB 1,1 N - 1
JMP INIT N - 1

THEN ADD J,1 N l - 1
ST J,C(I) NW-1
JP X,EXCH Nw-1
LD J,2 A N

EXCH LD T,P(I) Nw-1
LD T1 ,P - I (J) NV-1
ST T1,P(I) N w- 1
ST T , P - I (J) NW-1

CALL LD 1,2 NI
LD X,1 NW
CALL PROCESS Nw

LOOP LD J,C(I) NI+B~-I
CMP J,I NI+BN-1
JL THEN NI+B~-I

ELSE ST Z,C(I) BN
LDN X,X B~
ADD 1,1 B N
CMP I,N BN
JLE LOOP BN

preceding instruction (which therefore
must happen N ! - I times). Some of the
instruction frequencies are more compli-
cated (we shall analyze the quantities AN
and BN in detail below), but all of the
instructions can be labelled in this manner
(see [31]). From these frequencies, we can
calculate the total running time of the pro-
gram, if we know the time taken by the
individual instructions. We shall assume
that instructions which reference data in
memory take two time units, while j u m p
instructions and other instructions which
do not reference data in memory take one
time unit. Under this model, the total run-
ning time of Program 2 is

19N! + A~ + 10BN + 6N - 20

time units. These coefficients are typical,
and a similar exact expression can easily
be derived for any particular implementa-
tion on any particular real machine.

The improvements by which we derived
Program 2 from Program 1 are applicable
to most computers, but they are intended
only as examples of the types of simple
transformations which can lead to sub-
stantial improvements when programs are
implemented. Each of the improvements
results in one less instruction which is exe-
cuted N! times, so its effect is significant.
Such coding tricks should be applied only
when an algorithm is well understood, and
then only to the parts of the program
which are executed most frequently. For
example, the initialization loop of Pro-
gram 2 could be rotated for a savings of
N - 2 time units, but we have not bothered
with this because the savings is so insig-
nificant compared with the other improve-
ments. On the other hand, further im-
provements within the inner loop will be
available on many computers. For exam-
ple, most computers have a richer set of
loop control instructions than we have
used: on many machines the last three
instructions in Program 2 can be imple-
mented with a single command. In addi-
tion, we shall examine another, more ad-
vanced improvement below.

To properly determine the effectiveness
of these improvements, we shall first com-
plete the analysis of Program 2. In order to
do so, we need to analyze the quantities AN

Computing Surveys, Vol 9, No 2, June 1977

Permutation Generation Methods • 159

a n d B N. In the algorithm, A N is the num-
ber of times the test i odd succeeds, and BN
is the number of times the test c[i] = 1 suc-
ceeds. By considering the recursive struc-
ture of the algorithm, we quickly find that
the recurrence relations

AN = NAN_I +] '
N even

[N - 1 N odd

and
BN=NBN- , + 1

hold for N > 1, with A, = B, = 0. These
recurrences are not difficult to solve. For
example, dividing both sides of the equa-
tion for BN by N! we get
BN BN-, 1 BN-2 1 1
N w - (N - l) ! + N! (N - 2) ! + ~ + N.T

1 1 1
. 25+~+ + ~

o r

B N = N ' E 1
• 2 ~ N k l "

This can be more simply expressed in
terms of the base of the natural loga-
rithms, e, which has the series expansion
~k~o 1/k!: it is easily verified that

B N - [N!(e-2)]

That is, BN is the integer part of the real
numberN!(e-2) (OrBN = Nl(e-2) + e with
0 <- E < 1). The recurrences for A N c a n be
solved in a similar manner to yield the
result

AN = N! ~-, (-1)~ 2 ~ N k! - [N! /e] .

Substituting these into the expression
above, we find that the total running time
of Program 2 is

(19 + (l /e) + 10(e-2))N! + 6N + O(1),

or about 26.55N! time units. Table 3 shows
the values of the various quantities in this
analysis.

We now have a carefully implemented
program whose performance we under-
stand, and it is appropriate to consider
how the program can be further "optim-
ized." A standard technique is to identify
situations that occur frequently and han-
die them separately in as efficient a man-
ner as possible. For example, every other
exchange performed by Program 2 is sim-
ply P[1]:=:P[2]. Rather than have the pro-
gram go all the way through the main loop
to discover this, incrementing and then
testing c[2], etc., we can gain efficiency by
simply replacing i:=2 by i:=3"~rocess;
P[1]:=:P[2] in Algorithm 2. (For the pur-
pose of this discussion assume that there is
a statement i:=2 following the initializa-
tion loop in Algorithm 2.) In general, for
any n > 1, we can replace i:=2 by ~:=n+l;
process all permutations of P[1], • • . , P[n].
This idea was first applied to the permuta-
tion enumeration problem by Boothroyd
[2]. For small n, we can quite compactly
write in-line code to generate all permuta-
tions of P[1],. • . , P[n]. For example, tak-
ing n = 3 we may simply replace

CALL LD 1,2
LD X,1
CALL PROCESS

in Program 2 by the code in Program 3,

TABLE 3. ANALYSIS OF PROGRAM 2 (TN = 19! + AN + IOBN -{- 6IV - 20)

N N! AN BN TN 26.55N!

1 1 0 0
2 2 0 1 40 56+
3 6 2 4 154 159+
4 24 8 17 638 637+
5 120 44 86 3194 3186
6 720 264 517 19130 19116
7 5040 1854 3620 133836 133812
8 40320 14832 28961 1070550 1070496
9 362880 133496 260650 9634750 9634454

10 3628800 1334960 2606501 96347210 96344640
11 39916800 14684570 28671512 1059818936 1059791040
12 479001600 176214840 344058145 12717826742 12717492480

Computing Surveys, Vol 9, No 2, June 1977

160 • R. Sedgewick

which efficiently permutes P[1], P[2], P[3].
(While only the code that differs from Pro-
gram 2 is given here, '<Program 3" refers to
the entire improved program.)

The analysis of Program 3 differs only
slightly from that of Program 2. This is
fortunate, for it is often difficult to deter-
mine the exact effect of such major im-
provements. First, each of the new in-
structions is clearly executed N!/6 times,
and each occurrence of N! in Program 2's
frequencies becomes N!/6 for Program 3;
thus, the total running time is

(5 0 / 6) N ! + A ' N + B ' N + 6 N - 20.

Next, the analysis for AN and BN given
above still holds, except that the initial
conditions are different. We find that

A'N ' i ~ N k! =

and the total rum~Jng time of Program 3 is
then about 8.88N!.

By taking larger values of n we can get
further improvements, but at the cost of

P R O G R A M 3. OPTIMIZED INNER LOOP FOR
PROGRAM 2

CALL LD 1,4
LD X,1
CALL PROCESS
LD T1 ,P(1)
LD T2,P(2)
LD T3,P(3)
ST T1 ,P(2)
ST T2,P(1)
CALL PROCESS
ST T3,P(1)
ST T2,P(3)
CALL PROCESS
ST T1 ,P(1)
ST T3,P(2)
CALL PROCESS
ST T2,P(1)
ST T1 ,P(3)
CALL PROCESS
ST T3,P(1)
ST T2,P(2)
CALL PROCESS

n+3n! lines of code. This is an example of a
space-time tradeoff where the time saved
is substantial when n is small, but the
space f, o2_sumed becomes substantial when
n is large. For n = 4, the total running
time goes down to about 5.88N! and it is
probably not worthwhile to go further,
since the best that we could hope for would
be 5N! (the cost of two stores and a call).

On most computers, if Program 2 is "op-
timized" in the manner of Program 3 with
n = 4, Heap's method will run faster than
any other known method.

An Iterative Method (Ives)
The structures of Algorithm 2 and Algo-
r i thm 4 are very similar, so that a direct
"hand compilation" of Ives' method looks
very much like Program 1. By rotating the
loop and maintaining the value N + l - i in
a separate register we get Program 4, an
improved implementation of Ives' method
which corresponds to the improved imple-
mentation of Heap's method in Program 2.

The total running time of this program
is

18N! + 21D N + 1 0 N - 25,

where DN is the number of times i: =i + 1 is
executed in Algorithm 4. Another quan-
tity, CN, the number of times the test
P [N + I - i] = Q [N + I - i] fails, happens to
cancel out when the total running time is
computed. These quantities can be ana-
lyzed in much the same way that AN and
BN were analyzed for Program 2: they sat-
isfy the recurrences

CN = C~v-2 + (N - l) ! - (N - 2) v

DN = D1v-2 + (N - 2) !

so that
CN = (N - l) ! - (N - 2) ! + (N - 3) ! - (N - 4) ! + " "

DN = (N - 2) I + (N - 4) ! + (N - 6) ! + • • •

and the total running time of Program 2 is
18N! + 2 1 (N - 2) + O ((N - 4) !) ,

or about
(18'+ 21 ~N,

N(N- i)]-"
Thus Program 4 is faster than Program 2:
the improved implementation of Ives'
method uses less overhead per permuta-

C o m p u t i n g Surveys , Vol 9, No 2, J u n e 1977

Permutation Generation Methods
P R O G R A M 4 IMPROVED IMPLEMENTATION OF IVES'

INIT

THEN

CALL

LOOP

METHOD

ELSE

LD I,N 1
ST I,C(I) N-1
LD V,P(I) N-1
ST V,Q(I) N-1
CMP 1,1 N-1
JLE CALL N-1
SUB 1,1 N-1
JMP INIT N-1
LD T,P(J) N I -CN- 1
LD T1 ,P+I(J) NI-CN-1
ST T1 ,P(J) NI-CN-1
ST T,P+I(J) NI-C~-I
ADD J,1 NI-C~,-1
ST J,C(I) Nt-C~-I
LD 1,1 N I-C~
LD H,N Nw-C~
CALL PROCESS NI
LD J,C(I) Nm+DN-1
CMP J,H NS+DN-1
JL THEN NI+DN-1
LD T,P(I) CN+D,~
LD T1 ,P(H) CN+D~
ST T1 ,P(I) C,v+D~
ST I,C(I) C~+D~
CMP T,Q(H) C~+DN
JNE CALL CN+DN
ADD 1,1 D~
SUB H,1 DN
CMP I,H DN
JL LOOP D~

tion than the improved implementation of
Heap's method, mainly because it does less
counter manipulation. Other iterative
methods, like the Johnson-Trotter algo-
ri thm (or the version of Ives' method, Al-
gorithm 4a, which does not require the
elements to be distinct), are only slightly
faster than Heap's method.

However, the iterative methods cannot
be optimized quite as completely as we
were able to improve Heap's method. In
Algorithm 4 and Program 4, the most fre-
quent operation is P[c[N]]:=:P[c[N]+I];
c[N]:=c[N]+l; all but 1IN of the ex-
changes are of this type. Therefore, we
should program this operation separately.
(This idea was used by Ehrlich [10, 11].)
Program 4 can be improved by inserting
the code given in Program 5 directly after

CALL PROCESS

• 1 6 1

(As before, we shall write down only the
new code, but make reference to the entire
optimized program as "Program 5".) In
this program, Pointer J is kept negative so
that we can test it against zero, which can
be done efficiently on many computers.
Alternatively, we could sweep in the other
direction, and have J range from N - 1 to 0.
Neither of these tricks may be necessary
on computers with advanced loop control
instructions.

To find the total running time of Pro-
gram 5, it turns out that we need only
replace N! by (N-2)! everywhere in the
frequencies in Program 4, and then add
the frequencies of the new instructions.
The result is

9N! + 2 (N - l) ! + 18(N-2) ! + O((N-4) !) ,

not quite as fast as the "optimized" version
of Heap's algorithm (Program 3). For a
fixed value of N, we could improve the
program further by completely unrolling
the inner loop of Program 5. The second
through eighth instructions of Program 5
could be replaced by

LD T,P+I
ST T,P
ST V,P+I
CALL PROCESS
LD T,P+2
ST T,P+I
ST V,P+2
CALL PROCESS
LD T,P+3
ST T,P+2
ST V,P+3
CALL PROCESS

(This could be done, for example, by a
macro generator). This reduces the total
running time to

7N! + (N - l) ! + 18(N-2) ! + O((N-4) !)

which is not as fast as the comparable
highly optimized version of Heap's method
(with n = 4).

It is interesting to note that the optimi-
zation technique which is appropriate for
the recursive programs (handling small
cases separately) is much more effective
than the optimization technique which is

Computing Surveys, Vol. 9, No. 2, June 1977

162 • R. Sedgewick
PROGRAM 5 OPTIMIZED INNER LOOP FOR

PROGRAM 4

EXLP

INLP

CALL PROCESS (N-1)I
LD J,1-N (N-1)v
LD T,P+N+I(J) NI-(N-1)I
ST T,P+N(J) NI-(N-1)v
ST V,P+N+I(J) NV-(N-1)l
CALL PROCESS NV-(N-1) I
ADD J,1 NV-(N-1)~
JN J,INLP NI-(N-1)v
LD T,P+I (N-1)~
ST T,P+N (N-1)v
ST V,P+I (N-1)~
CMP T,Q+N (N-1)l
JNE EXLP (N-1)l

appropriate for the iterative programs
(loop unrolling).

A Cyclic Method (Langdon)
It is interesting to study Langdon's cyclic
method (Algorithm 6) in more detail, be-
cause it can be implemented with only a
few instructions on many computers. In
addition, it can be made to run very fast on
computers with hardware rotation capa-
bilities.

To implement Algorithm 6, we shall use
a new instruction

MOVE TO, FROM(I)

which, if Register I contains the number i,
moves ~ words starting at Location FROM
to Location TO. That is, the above instruc-
tion is equivalent to

LD J,0
LOOP T,FROM(J)

T,TO(J)
ADD J,1
CMPJ,I
JL LOOP

We shall assume that memory references
are overlapped, so that the instruction
takes 2i time units. Many computers have
"block transfer" instructions similar to
this, although the details of implementa-
tion vary widely.

For simplicity, let us further suppose
that PI l l , . - .,P[N] are initially the inte-
gers 0,1,. • • , N - l , so that we don't have to
bother with the Q array of Algorithm 6.

With these assumptions, Langdon's
method is particularly simple to imple-
ment, as shown in Program 6. Only eight
assembly language instructions will suf-
fice on many computers to generate all
permutations of {0,1,. • • , N - 1}.

As we have already noted, however, the
MOVEs tend to be long, and the method is
not particularly efficient i fN is not small.
Proceeding as we have before, we see that
EN and FN satisfy

EN = ~ k!
l~k'~N--1

FN= ~ k k ! = (N + l) ! - 1
l ~ k ~ N

(Here FN is not the frequency of execution
of the MOVE instruction, but the total num-
ber of words moved by it.) The total run-
ning time of Program 6 turns out to be

N , (2 N + 1 0 + 9) + (O (N - 2) ')

It is faster than Program 2 for N < 8 and
faster than Program 4 for N < 4, but it is
much slower for larger N.

By almost any measure, Program 6 is
the simplest of the programs and algo-
ri thms that we have seen so far. Further-
more, on most computer systems it will
run faster than any of the algorithms im-
plemented in a high-level language. The
algorithm fueled a controversy of sorts (see
other references in [25]) when it was first
introduced, based on just this issue.

Furthermore, if hardware rotation is
available, Program 6 may be the method of
choice. Since (N-1)/N of the rotations are
of length N, the program may be optimized
in the manner of Program 5 around a four-
instruction inner loop (call, rotate, com-
pare, conditional jump). On some ma-

PROGRAM 6 IMPLEMENTATION OF LANGDON'S
METHOD

THEN

LOOP

LD I,N-1 NI
CALL PROCESS NI
LD T,P+I NV+E~
MOVE P,P+I(I) F~
ST T,P+I(I) NV+E~
CMP T,I NI+E N
JNE THEN NI+EN
SUB 1,1 E~
JNZ LOOP E~

Computing Surveys, Vol 9, No 2, June 1977

Permutation Generation Methods • 163

chines, the rotate might be performed in,
say, two time units (for example, if paral-
lelism were available, or if P were main-
tained in registers), which would lead to a
total time of 5N! + O((N-1)!). We have
only sketched details here because the is-
sues are so machine-dependent: the ob-
vious point is that exotic hardware fea-
tures can have drastic effects upon the
choice of algorithm.

CONCLUSION

The remarkable similarity of the many
permutation enumeration algorithms
which have been published has made it
possible for us to draw some very definite
conclusions regarding their performance.
In Section 1, we saw that the method given
by Heap is slightly simpler (and therefore
slightly more efficient) than the methods
of Wells and Boothroyd, and that the
method given by Ives is simpler and more
efficient than the methods of Johnson and
Trotter (and Ehrlich). In Section 2, we
found that the cyclic and lexicographic al-
gorithms will not compete with these, ex-
cept possibly for Langdon's method, which
avoids some of the overhead in the control
structure inherent in the methods. By
carefully implementing these algorithms
in Section 3 and applying standard code
optimization techniques, we found that
Heap's method will run fastest on most
computers, since it can be coded so that
most permutations are generated with
only two store instructions.

However, as discussed in the Introduc-
tion, our accomplishments must be kept in
perspective. An assembly-language imple-
mentation such as Program 3 may run 50
to 100 times faster than the best previously
published algorithms (in high-level lan-
guages) on most computer systems, but
this means merely that we can now gener-
ate all permutations of 12 elements in one
hour of computer time, where before we
could not get t oN = 11. On the other hand,
if we happen to be interested only in all
permutations of 10 elements, we can now
get them in only 15 seconds, rather than 15
minutes.

The problem of comparing different al-
gorithms for the same task arises again

and again in computer science, because
new algorithms (and new methods of ex-
pressing algorithms) are constantly being
developed. Normally, the kind of detailed
analysis and careful implementation done
in this paper is reserved for the most im-
portant algorithms. But permutation gen-
eration nicely illustrates the important is-
sues. An appropriate choice between algo-
rithms for other problems can be made by
studying their structure, implementation,
analysis, and %ptimization" as we have
done for permutation generation.

ACKNOWLEDGMENTS

Thanks are due to P Flanagan, who implemented
and checked many of the algomthms and programs
on a real computer. Also, I must thank the many
authors listed below for providmg me with such a
wealth of maternal, and I must apologize to those
whose work I may have misunderstood or misrepre-
sented. Finally, the editor, P. J. Denning, must be
thanked for his many comments and suggestmns for
improving the readability of the manuscmpt.

REFERENCES
[1] BOOTI~OYD, J "PERM (Algorithm 6)," Com-

puter Bullet in 9, 3 (Dec. 1965), 104
[2] BOOTHROVD, J. "Permutation of the elements

of a vector (Algomthm 29)"; and "Fast permu-
tation of the elements of a vector (Algorithm
30)," Computer J. 10 (1967), 310-312.

[3] BaATLEY, P "Permutations with repetitious
(Algomthm 306)," Comm A C M 1O, 7 (July
1967), 450

[4] Cove, YOU, R R.; AND SULLrVAN, J.
G. "Permutahon (Algorithm 71)," Comm.
A C M 4, 11 (Nov 1961), 497.

[5] D~,aSHOWITZ, N. "A simplified loop-free algo-
ri thm for generating permutatlous," B I T 15
(1975), 158-164.

[6] DIJKSTRA, E W A dzsc~pllne of program-
m~ng, Prentice-Hall, Englewood Cliffs, N J ,,
1976.

[7] DZg~STaA, E. W "On a gauntlet thrown by
David Gries," Acta Informat~ca 6, 4 (1976),
357.

[8] DURSTENFELD, R. "Random permutation (AI-
gomthm 235)," Comm. A C M 7, 7 (July 1964),
420.

[9] EAVES, B. C "Permute (Algorithm 130),"
Comm. A C M 5, 11 (Nov. 1962), 551 (See also:
remarks by R. J. Ord-Smlth m Comm A C M
10, 7 (July, 1967), 452-3)

[10] EHRLICH, G. "Loopless algomthms for gener-
atmjg permutations, combinations and other
combinatorial configurations," J A C M 20, 3
(July 1973), 500-513.

[11] EHRLICH, G "Four combmatomal algomthms
(Algomthm 466)," Comm A C M 16, 11 (Nov
1973), 690-691.

Computing Surveys, Vol 9, No 2, June 1977

164 • R . Sedgewick

[12] EWN, S. Algortthmtc combtnatortcs, Macmil-
lan, Inc., N.Y., 1973.

[13] FIKE, C T. "A permutation generation
method," Computer J 18, 1 (Feb. 1975), 21-22.

[14] FISCHER, L. L.; AND KRAUSE, K. C , Lehr-
buch der Combtnattonslehre und der Artthme-
tzk, Dresden, 1812

[15] HALL, M.; ANDKNUTH, D.E. "Combinatorial
analysis and computers," Amertcan Math.
Monthly 72, 2 (Feb. 1965, Part II), 21-28.

[16] HEAl', B R. "Permutations by Inter-
changes," Computer J. 6 (1963), 293-4.

[17] HOWELL, J R. "Generation of permutations
by adchhon,"Math. Comp 16 (1962), 243-44

[18] HOWELL, J . R . "Permutation generater (Al-
gorithm 87)," Comm. ACM 5, 4 (April 1962),
209. (See also: remarks by R. J. Ord-Smith in
Comm ACM 10, 7 (July 1967), 452-3.)

[19] IvEs, F.M. "Permutation enumeration: four
new permutatmn algorithms," Comm. ACM
19, 2 (Feb. 1976), 68-72.

[20] JOHNSON, S.M. "Generatlonofpermutations
by adjacent transposition," Math. Comp. 17
(1963), 282-285.

[21] KNUTH, D.E. "Fundamental algorithms," in
The art of computer pro~.rammzng 1, Addison-
Wesley, Co., inc., Reading, Mass., 1968.

[22] KNUTH, D.E. "Seminumerlcal algorithms,"
m The art ofcom~uter programming 2, Addi-
son-Wesley, Co., inc., Reading, Mass., 1969.

[23] KNUTH, D. E "Sorting and searching," in
The art of computer programmtng 3, Addison-
Wesley, Co., Inc, Reading, Mass, 1972

[24] KNUTH, D. E. "St,ru, ctured programming
with go to statements, ' Computing Surveys 6,
4 (Dec. 1974), 261-301.

[25] LANaDON, G. G., Jr., "An algorithm for gen-
erating permutations," Comm. ACM 10, 5
(May 1967), 298-9. (See also. letters by R. J.
Ord-Smith in Comm. ACM 10, 11 (Nov. 1967),
684; by B. E. Rodden m Comm. ACM 11, 3
(March 1968), 150; CR Rev. 13,891, Computing
Reviews 9, 3 (March 1968), and letter by Lang-
don inComm. ACM 11, 6 (June 1968), 392.)

[26] LEH~R, D H. "Teaching combinatorial
tricks to a computer," in Proc. of Symposlum
Appl. Math ,Combtnatortal Analysis, Vol. 10,
American Mathematical Society, Providence,
R.I , 1960, 179-193.

[27] LEHMER, D.H. "The machine tools of combi-
natemcs," m Applied comb~natortal mathe-
matws (E. F. Beckenbach, [Ed.]), John Wiley,
& Sons, Inc., N Y, 1964

[28] L~.mvi~.R, D.H. "Permutation by adjacent in-
terchanges," Amerwan Math. Monthly 72, 2
(Feb. 1965, Part II), 36-46.

[29] Om)-SMITH, R J. "Generation of permuta-
tion sequences Part 1," Computer J. 13, 3
(March 1970), 152-155.

[30] OaD-SMITH, R. J. "Generation of permuta-
tion sequences: Part 2," Computer J. 14, 2
(May 1971), 136-139.

[31] ORD-SMITH, R. J. "Generation of permuta-
tions in psoudo-lexicographic order (Algo-
rithm 308)," Comm ACM 10, 7 (July 1967),

452 (See also: remarks in Comm ACM 12, 11
(Nov 1969), 638.)

[32] Om)-SMITH, R J "Generation of permuta-
tions m lexicographlc order (Algorithm 323),"
Comm. ACM 11, 2 (Feb. 1968), 117 (See also:
certification by I. M. Leltch in Comm ACM
12, 9 (Sept. 1969), 512.)

[33] PECK, J E. L; AND SCHRACK, G F
"Permute (Algorithm 86)," Comm. ACM 5, 4
(April 1962), 208.

[34] PHmLmS, J. P .N . "Permutation of the ele-
ments of a vector in lexicographic order (Algo-
rithm 28)," Computer J. 1O (1967), 310-311

[35] PLESZCZYNSKL S. "On the generation of per-
mutations," Informatmn Processtng Letters 3,
6 (July 1975), 180-183.

[36] RIORDAN, J. An ~ntroductton to comb~nato-
rtal analysts, John Wiley & Sons, Inc., N.Y.,
1958.

[37] ROHL, J .S. , "Programming improvements to
Fike's algorithm for generating permuta-
tions," Computer J. 19, 2 (May 1976), 156

[38] ROBXNSON, C. L. "Permutation (Algorithm
317)," Comm. ACM 10, 11 (Nov. 1967), 729.

[39] SAG, T.W. "Permutations of a set with repe-
titions (Algorithm 242)," Comm ACM 7, 10
(Oct 1964), 585.

[40] SCHRAK, G. F , AND SHIMRAT, M
"Permutation in lexicographlc order (Algo-
rithm 102)," Comm. ACM 5, 6 (June 1962),
346. (See also: remarks by R J Ord-Smith in
Comm ACM 10, 7 (July 1967), 452-3.)

[41] SHEN, M.-K "On the generation ofpermuta-
tlons and combinations," BIT 2 (1962), 228-
231

[42] SHEN, M -K "Generation ofpermutations in
lexicographic order (Algorithm 202)," Comm
ACM 6, 9 (Sept. 1963), 517. (See also: remarks
by R. J. Ord-Snnth in Comm. ACM 10, 7 (July
1967), 452-3.)

[43] SLOANE, N. J. A. A handbook of tnteger se-
quences, Academic Press, Inc , N Y, 1973

[44] TOMPKIN8, C. "Machine attacks on problems
whoso variables are permutations," in Proc
Symposium zn Appl. Math., Numerwal Analy-
sts, Vol 6, McGraw-Hill, Inc., N.Y., 1956,
195-211

[45] TROTTER, H. F. "Perm (Algorithm 115),"
Comm. ACM 5, 8 (August 1962), 434-435.

[46] WAL~R, R. J "An enumerative technique
for a class of combinatorial problems," in Proc
Symposium in Appl. Math, Combtnatorial
Analysts, Vol. 10, American Mathematical So-
ciety, Providence, R.I , 1960, 91

[47] WZLLS, M. B "Generation of permutations
by transposition," Math Comp 15 (1961), 192-
195.

[48] WELLS, M. B. Elements of combtnatortal
computtng, Pergamon Press, Elmsford, N.Y.,
1971.

[49] WHITEHEAD, E. G. Combinatorial algo-
rithms. (Notes by C. Frankfeldt and A. E.
Kaplan) Courant Institute, New York Univ.,
1973, 11-17.

Computlng Surveys, Vol 9, No 2, June 1977

